Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 38(3): e9675, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211347

RESUMO

RATIONALE: Many insect species undertake multigenerational migrations in the Afro-tropical and Palearctic ranges, and understanding their migratory connectivity remains challenging due to their small size, short life span and large population sizes. Hydrogen isotopes (δ2 H) can be used to reconstruct the movement of dispersing or migrating insects, but applying δ2 H for provenance requires a robust isotope baseline map (i.e. isoscape) for the Afro-Palearctic. METHODS: We analyzed the δ2 H in the wings (δ2 Hwing ) of 142 resident butterflies from 56 sites across the Afro-Palearctic. The δ2 Hwing values were compared to the predicted local growing-season precipitation δ2 H values (δ2 HGSP ) using a linear regression model to develop an insect wing δ2 H isoscape. We used multivariate linear mixed models and high-resolution and time-specific remote sensing climate and environmental data to explore the controls of the residual δ2 Hwing variability. RESULTS: A strong linear relationship was found between δ2 Hwing and δ2 HGSP values (r2 = 0.53). The resulting isoscape showed strong patterns across the Palearctic but limited variation and high uncertainty for the Afro-tropics. Positive residuals of this relationship were correlated with dry conditions for the month preceding sampling whereas negative residuals were correlated with more wet days for the month preceding sampling. High intra-site δ2 Hwing variance was associated with lower relative humidity for the month preceding sampling and higher elevation. CONCLUSION: The δ2 Hwing isoscape is applicable for tracing herbivorous lepidopteran insects that migrate across the Afro-Palearctic range but has limited geolocation potential in the Afro-tropics. The spatial analysis of uncertainty using high-resolution climatic data demonstrated that many African regions with highly variable evaporation rates and relative humidity have δ2 Hwing values that are less related to δ2 HGSP values. Increasing geolocation precision will require new modeling approaches using more time-specific environmental data and/or independent geolocation tools.


Assuntos
Borboletas , Animais , Hidrogênio , Isótopos/análise , Estações do Ano , Modelos Lineares
2.
Proc Natl Acad Sci U S A ; 120(16): e2218280120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036992

RESUMO

Migratory insects are key players in ecosystem functioning and services, but their spatiotemporal distributions are typically poorly known. Ecological niche modeling (ENM) may be used to predict species seasonal distributions, but the resulting hypotheses should eventually be validated by field data. The painted lady butterfly (Vanessa cardui) performs multigenerational migrations between Europe and Africa and has become a model species for insect movement ecology. While the annual migration cycle of this species is well understood for Europe and northernmost Africa, it is still unknown where most individuals spend the winter. Through ENM, we previously predicted suitable breeding grounds in the subhumid regions near the tropics between November and February. In this work, we assess the suitability of these predictions through i) extensive field surveys and ii) two-year monitoring in six countries: a large-scale monitoring scheme to study butterfly migration in Africa. We document new breeding locations, year-round phenological information, and hostplant use. Field observations were nearly always predicted with high probability by the previous ENM, and monitoring demonstrated the influence of the precipitation seasonality regime on migratory phenology. Using the updated dataset, we built a refined ENM for the Palearctic-African range of V. cardui. We confirm the relevance of the Afrotropical region and document the missing natural history pieces of the longest migratory cycle described in butterflies.


Assuntos
Borboletas , Humanos , Animais , Ecossistema , Migração Animal , Europa (Continente) , Insetos , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...